Quantcast
Channel: Robots – Auxiliary Memory
Viewing all articles
Browse latest Browse all 34

Is an International Nonprofit Space Program Possible?

$
0
0

Ever dream of being an astronaut?  Ever fantasize about developing a new rocket system to take people to Mars?  Ever wanted to be a colonist on the Moon?  For decades only the richest of nations could afford a space program.  In the last decade several rich men have started their own space programs for rich space tourists.  But what about us poor folks, with big final frontier dreams?  Could we collective scrape up a few billion to build our own space program?  The idea was once silly, but now that ordinary people are winning lotteries approaching a billion dollars, digging up the money to finance an amateur space program doesn’t sound as impossible as it once did.

Space programs 1.0 for most of history have been huge nationalistic affairs.  Only rich governments and astronauts with the right stuff could participate, leaving most would-be final frontier explorers on the ground.  The last decade has shown the rise of private space enterprises with the focus on space for profit, space programs 2.0.   But you still have to be a billionaire to own a space company, or a multi-millionaire to be a space tourist. 

I’m asking if a 3.0 generation of space exploration isn’t possible, one based on non-profit, open source, volunteerism, where ordinary people design, build and travel into space?

What motivates people?  As Daniel H. Pink explains in his book Drive: The Surprising Truth About What Motivates Us, it isn’t the outer rewards that drive us the hardest, but the inner desires.  There’s not enough people interested in colonizing the final frontier to motivate Congress to spend more tax money on space exploration, but is there enough people interested by their own inner desires to finance a space program collectively?  We are seeing more and more projects developed around the world by volunteer effort.  Linux, the operating system that fits on everything from tiny embedded controllers to giant supercomputers, is produced by volunteer effort.  Kickstarter and Kiva show the power of individuals to financially back new ideas.  TED and Khan Academy illustrate the power of individuals with ideas to influence change.  Projects like Wikipedia show that people all over the world are willing to spend long hours working without pay to create something that almost everyone uses.

If you don’t know about the open source movement you should follow the link and read about it.  It’s about why and how programmers develop free computer programs for everyone to use.  Eric S. Raymond wrote a famous philosophical essay about open source software called The Cathedral & The Bazaar.  It’s hard to explain the open source movement in a few words, but it’s about people all over the world working on large projects, and through their own  self-starting initiative, creating something very valuable, that’s used by millions and billions of people.

The open source movement follows in the footsteps of the 19th century amateur scientist.   Now this power to the people philosophy is moving on to bigger projects, such as ARKYD: A Space Telescope for Everyone by Planetary Resources.

By using the crowd source funding site Kickstarter, Planetary Resources promises to build a space telescope for everyone to use.  You make it happen by donating money, and depending on how much you donate, you get various participation rewards.  The ARKYD is no Hubble Space Telescope, but it does show the power of people working together.

But what if we could crowd fund something bigger, like a manned lunar base?  The Bloomberg link sites one study claiming it will take $35 billion to put a four person base on the Moon.  The ARKYD project is aiming for $1 million dollars, and they are half-way funded, a Moon base would require 35,000 millions.  That’s several quantum leaps in crowd funding success.  Is such people funded projects even possible? 

What would a people’s space program cost?  Let’s imagine a private open source crowd funded space program with an annual budget of $5 billion dollars.  That’s 5,000,000,000 – lots of zeros.  It would require 50 million people donating $100 a year.  There’s probably not that many space enthusiasts in the world, because if there were, NASA would have solid public support when it comes to Congressional appropriations. 

A five billion dollar space program is also 5 million people donating a $1,000 a year.  That sounds like a lot, but that’s $83.33 a month, or about the cost of a monthly smartphone bill.  What if such a commitment would get you into a lottery to fly in space?  What if you got to help design a lunar colony?  That’s the kind of inner motivation that inspired Daniel Pink’s book, Drive

A club of 5 million people might be possible.  Especially when you think about how many volunteer type tasks would be required to start an open source space programs.  Let’s assume our open source space program doesn’t build rockets, but hires the 2.0 generation of private rocket builders, and our goal is to develop a lunar colony, it could take decades to evolve such a space program.  Let’s say for the first twenty years we devote ourselves to robotic missions to the Moon, how many people out there would love to design and build robots for the purpose, get no pay, but spend their their own money?

If we look around we can find thousands, if not millions of people already spending lots of their own money in scientific-like endeavors.  If you just include open source programmers, robot builders, amateur astronomers, amateur rocket builders, the Maker crowd, amateur AI developers, gamers who love to create complicated simulations, X-Prize enthusiasts, and get them all working on one big project, could we have an open source, non-profit space program?

In recent weeks I’ve seen quite a few internet stories that make me think such synergy is possible.

Amateur Astronomy

Amateur astronomers has always made significant contributions to real science. Timothy Ferris wrote a whole book on the topic,  Seeing in the Dark : How Amateur Astronomers Are Discovering the Wonders of the Universe.  With modest equipment, dogged determination, and disciplined  systematic effort, people without PhDs can add important information to scientific journals and research.  Take a look at the trailer for the PBS documentary that’s based on the book.  It’s available on Netflix.

Amateurs have recently discovered exoplanets by going through public data.  Amateurs often discover comets and supernovas.   Amateurs track asteroids and near Earth objects.  Amateurs monitor sunspots and double stars.  Telescopes are becoming more powerful and affordable to amateurs, and CCD astronomy lets amateurs take astronomical photographs that surpass what the Mt. Palomar telescope could take back in the 1960s.

The ARKYD space telescope is probably just the first of many amateur spaced based telescopes.  Because of the internet, there are many robot control ground based telescopes around the world that amateurs can use

Imagine amateur astronomers having a robotic lunar based telescope to share.

Make, Makers and Robots

Make Magazine has had a tremendous impact on the world of Do-It-Yourselfers.   Small cheap microcontrollers  like the Raspberry Pi and Arduino inspire people to become inventors of intelligent gadgets.  Look what Dave Ackerman did with a Raspberry Pi and a weather balloon.  Please follow the link to read a fascinating article.  These pictures look better than what the U.S. government with German scientists took with early sounding rockets back in the 1940s.

pi-view-of-Earth

Make Magazine shows the tip of the iceberg for how many would-be inventors live in our world.   Now take a look at Robot Magazine.  How many boys and girls out there dream of building a robot that does something really cool?  Why should only JPL and NASA scientists have all the fun?

Science Fairs

Eesha Khare, an 18-year-old student from Lynbrook High School, Saratoga, California, won second place in the Intel International Science and Engineering Fair this year for developing a super-capacitor that would allow cellphones and other electronic devices to be recharged in 20-30 seconds, instead of hours, and upped the recharging lifetimes from 1,000 charges to 10,000.  Ionut Budisteanu, 19, of Romania, developed AI for a self-driving car.  Henry Lin, 17, of Shreveport, Louisiana, develop a computer simulation “that simulated thousands of clusters of galaxies, providing scientist with new data that will allow them to better understand dark matter, dark energy and the balance of heating and cooling in the universe’s most massive objects.”

It’s obvious that individuals, without years of graduate school can do significant science.  Is it possible to coordinate amateurs to work on a much larger project that spans years of effort?

Open Source Space Program

What if we applied the open source programming  philosophy to amateur science to develop larger amateur projects?  The way open source software begins is when a software inventor starts a project and then Tom Sawyers other people to volunteer.  I imagine an open source space program to be an organization like Wikipedia that gives a collection of centralized tasks to thousands of volunteers.

An open source space program could start by designing itself with a virtual world version first.  That initial projects would be created in simulations, and once they are worked out, then start building real world projects.  Let’s imagine the first project is to design a lunar lander. Given the constraints of costs and the payload capacity of private launch rocket services, how big of a lander can we design?  For example, lets say we can get a 1000 pounds sent towards the Moon for $300 million.  How sophisticated can we make such a lander?

For any self-sufficient lunar colony to succeed it will require living off the land.  What elements exist on the lunar surface or in it’s scant atmosphere that can be used to build a base for human habitation?  The Moon has water, and that gives us raw material for oxygen to breathe, and oxygen and hydrogen for rocket fuel.  But can we find nitrogen on the Moon?  Trace amounts have been found in the atmosphere.  Could we build a machine that gathers significant amounts of nitrogen, so we could have a safe breathable atmosphere for when we robotically dig our underground Moon City?

The possibilities are endless.  We design a series of robots that process lunar resources into goods we don’t have to send to the Moon.  We keep sending robots to build what we need until we have a base that’s safe for humans.  Then we send people.

Now, is this possible through volunteer effort and open source techniques?

JWH – 6/5/13



Viewing all articles
Browse latest Browse all 34

Trending Articles